En esta sección, vamos a definir las magnitudes características de un movimiento circular, análogas a las ya definidas para el movimiento rectilíneo.
Se define movimiento circular como aquél cuya trayectoria es una circunferencia. Una vez situado el origen O de ángulos describimos el movimiento circular mediante las siguientes magnitudes.
En el instante t' el móvil se encontrará en la posición P' dada por el ángulo q '. El móvil se habrá desplazado Dq=q ' -q en el intervalo de tiempo Dt=t'-t comprendido entre t y t'. |
Como ya se explicó en el movimiento rectilíneo, la velocidad angular en un instante se obtiene calculando la velocidad angular media en un intervalo de tiempo que tiende a cero.
Si en el instante t la velocidad angular del móvil es w y en el instante t' la velocidad angular del móvil es w'. La velocidad angular del móvil ha cambiado Dw=w' -w en el intervalo de tiempo Dt=t'-t comprendido entre t y t'. |
La aceleración angular en un instante, se obtiene calculando la aceleración angular media en un intervalo de tiempo que tiende a cero.
Dada la velocidad angular, hallar el desplazamiento angular
Si conocemos un registro de la velocidad angular del móvil podemos calcular su desplazamiento q -q0 entre los instantes t0 y t, mediante la integral definida.El producto w dt representa el desplazamiento angular del móvil entre los instantes t y t+dt, o en el intervalo dt. El desplazamiento total es la suma de los infinitos desplazamientos angulares infinitesimales entre los instantes t0 y t.
En la figura, se muestra una gráfica de la velocidad angular en función del tiempo, el área en color azul mide el desplazamiento angular total del móvil entre los instantes t0 y t, el arco en color azul marcado en la circunferencia.
|
Dada la aceleración angular, hallar el cambio de velocidad angular
Del mismo modo que hemos calculado el desplazamiento angular del móvil entre los instantes t0 y t, a partir de un registro de la velocidad angular w en función del tiempo t, podemos calcular el cambio de velocidad w -w0 que experimenta el móvil entre dichos instantes, a partir de una gráfica de la aceleración angular en función del tiempo.En la figura, el cambio de velocidad w -w0 es el área bajo la curva a - t, o el valor numérico de la integral definida en la fórmula anterior. Conociendo el cambio de velocidad angular w -w0, y el valor inicial w0 en el instante inicial t0, podemos calcular la velocidad angular w en el instante t. |
Un movimiento circular uniforme es aquél cuya velocidad angular w es constante, por tanto, la aceleración angular es cero. La posición angular q del móvil en el instante t lo podemos calcular integrando q -q0=w(t-t0) o gráficamente, en la representación de w en función de t. |
Un movimiento circular uniformemente acelerado es aquél cuya aceleración a es constante. Dada la aceleración angular podemos obtener el cambio de velocidad angular w -w0 entre los instantes t0 y t, mediante integración, o gráficamente. |
|
Dada la velocidad angular w en función del tiempo, obtenemos el desplazamiento q -q0 del móvil entre los instantes t0 y t, gráficamente (área de un rectángulo + área de un triángulo), o integrando |
Despejando el tiempo t en la segunda ecuación y sustituyéndola en la tercera, relacionamos la velocidad angular ω con el desplazamiento θ-θ0
No hay comentarios.:
Publicar un comentario